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TECHNICAL NIEMORAMDUM 

The problem of contaminant particles becomes ever more critical as 
the state of the art advances in space flight experiments involving measurement 
of optical and ultraviolet radiation. A method of determining contributions from 
local sources is needed to  optimize system performance. Sources such as 
spacecraft dumps and rocket firings are relatively easy to  analyze and isolate 
from critical surfaces because they are external and discontinuous in time. 
Outgassing, however, occurs internal to  the experiments and continuously in 
time. Quantities of experimental data on outgassing rates a re  available, but 
there has been no effort to apply boundary conditions to  make such outgassing 
data meaningful in a flight situation. The purpose of this study is to  make such 
an application and thereby contribute a vital unit to  an optimization program for 
design of optical flight experiments. 

It may be worthwhile here to  place this problem in context and point 
out the interfaces with other subprograms in the optimization program (Fig. i) 
The output of the first subprogram will be source rates. This will serve as 
input to the mass transport subprogram along with sticking coefficients of 

INTERFACE 

I 

~ _ _ _  

Figure i e Subprograms in  the contamination program. 



boundary surfaces. The output of the mass transport analysis will be a mass  
flux at the optical surface of interest. This wil l  serve a s  input t o  an optical 
degradation program to determine the effects of this flux upon the experiment. 
Al l  areas  shown in Figure I are being worked on. 

The eventual goal of this study was to provide a general design tool for 
optimizing optical experiments in space. At  the time the study was begun the 
most pressing need for such analysis existed in the Apollo Telescope Mount 
(ATM) program. For this reason the parameters chosen are meant to 
exemplify a typical ATM experiment. Even more critical is the altitude for 
which the calculations are carried out. This altitude determines whether the 
problem is to be purely geometric or is to  involve particle-particle collisions 
within the experiment itself. A t  the ATM altitude of 425 kilometers (235 n. mi) 
the mean free path of a particle is approximately I O 4  meters [ I ]  , which 
essentially dictates a geometric approach. Although pressure in the canister 
builds up to higher values the lowest value of mean free path with the doors 
open is approximately 80 meters, which is still a geometric problem. How- 
ever, the doors a re  closed during the night cycle, since ATM is a solar experi- 
ment, and the pressures build up to  values that would result in intermolecular 
collisions. With the doors closed there is no "wind" and consequently no 
momentum transfer; therefore, the problem is still basically geometrical in 
character. The primary effect might be expected to come from the sticking 
coefficient, but this turns out to  be surprisingly pressure independent, and 
for this reason the increase in pressure during the night does not seem to 
seriously invalidate the geometric approach. At worst an effective increase 
in source rate should handle this problem. There is a compensating factor in 
that absorption on the lens is less in the absence of ultraviolet radiation. 

To solve the problem analytically it is necessary to obtain the 
probability that a re-emitted particle at point'x on the wall will strike the lens 

I. Conversation with J. e Scannapieco, General Electric, Valley Forge, 
Pennsylvania, July I 969. 
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(Fig. 2) e This is simply the ratio of the angle subtended by the lens to the 
angle into which the particle is emitting. ( or three dimensions, it is the 
ratio of solid angles.) This is with the assumption of isotropic emission. 
Such an assumption will be replaced by a more realistic distribution a s  soon as 
the geometric probability is obtained. 

Figure 2. Basic geometry to be considered. 

General symbols a r e  defined a s  follows: 

N the number of particles per second from the source at 
(0, Q) 0 

N the number of particles per second from the wall at 
X 

(x, y) 

w angle subtended by lens referred to the source (0,O). 

W'J angle subtended by lens referred to point (x, y) 
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Xo, XI, Yo, Yl corner points of two-dimensional box 

Yo, Y l  boundary of lens 

i , 2 , 3 , 4  the number of the wall for later clarity. 

From Figure 2 it is seen that 

x = Y  t an8  , ( 1) 

and, from the defined quantities, it follows that the number of particles per 
w 

second which will strike the lens directly from the source is - N, while 2n 
from wall I there will be - N particles per second striking the lens. To 

determine some value for N 

w 
n x  

it is necessary to scale up the part of the 
X’ 

drawing concerned with the top wall ( Fig. 3) . 

X = Q  X x+A x 

(0.0) 

r /  I 

(0.0) 

Figure 3. Enlargement of top wall geometry. 

From Figure 3 it can be seen that 

de = p J  - 
x 2n 9 

which gives the number of particles per second hitting a t  x in the cone de . 
4 



(Note: 2n radians i s  to be replaced by 47r steradians in the three-dimensional 
problem.) The total number of particles that hit between x and x+Ax 
second is defined by 

From equation (I) , it follows that 

O(x+Ax) = tan 

A ser ies  expansion [ 21 for the a rc  tan a is 

( 3a) 
-1 1 l I 

5 7 a +  - a  - - a + + . .  ( a < l )  tan a = a  - - 3 

Using the formulas to first order in A x  for x < y allows the calculation of 

2n (-f)j Ax for x < y e (4) 

Consider the case x > y 

ax f +  - 
X 

-5 
+ . . e  

Ax + -  1 
5 X 

3 - -  

5 



Here it is necessary to use the binomial theorem, 

lim ( I+AX)~ i + n ~ x  , 
Ax-0 

to obtain 

3Ax tan I- - 
X 

- -  I - =)+ e .  

5 X 

Therefore, to  first order in Ax, equation (5) is obtained: 

It is possible to put these expressions in a closed for 1R' by observing that 

d -1 
-1 -1 

tan ( ~ + A X )  - tan  (x) 
A x  

= -  lim & tan (XI 
Ax-0 

- d tan -1 u =  __z_ - d' or d [tan-' dx i-tu dx 

By rewriting equation (4) in a simple form through the use of complex notation 
and comparing this t o  the geometric series, it can be noted that, for x < y, 

6 



and for 

- -1 -1 tan - tan - 

11 

-I 

YA X -1 

x + Y  
= - z r 2  =Atan 

From equation (2) it follows that 

N yAx 
x,Ax 2n x + y -2-2 = -  N 

for all values of 

isotropic re-emission off the wall. This is not a very good assumption and 
will now be replaced by a directionally dependent probability factor. A cosine 
dependence which is illustrated schematically in Figure 4 will be used. 

e As mentioned earlier, this number is for assumed 

To make an application of this directional dependence to the top wall 
shown in Figure 2, it is necessary to analyze the geometry in more detail 
(Fig. 5) a The definition of several parameters shown in Figure 5 are  

-1 e = tan 9 
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WALL SURFACE x x + d x  

Figure 4. Illustration of meaning of cos@ dependence. 
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eometry from which the directional dependence is derived. 
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If it is assumed that all particles a re  re-emitted from Ax, the number of 
particles per second leaving in the direction 0" is proportional to ~ 0 ~ 0 ~ ~ ~  
Denote the number per second leaving Ax in direction 0 by N = N 

 AX,^ A x  
case. The sum over all directions must be the total number leaving 
N ; i.e., x, Ax 

n - 
2 

7r - 
2 

= N  s cosOd9=2NCuc . 
-?r 

s NAx,OdB = N  x,Ax AX 
-IT - 

2 
- 
2 

Therefore, 

N 
cos0 - X 9 A x  and N - -  - I N  

NAx - 2 Ax$ 2 x,Ax 

is the normalized distribution that gives the angular dependence of particles 
leaving Ax. 

It is necessary to modify the preceding results slightly to take into 
account the fact that some particles permanently stick to the walls and a re  not 
re-emitted. or this purpose a new parameter P will be defined to be the 
probability that a particle will be re-emitted from the surface. This 
be a function of temperature or  other variables, but it is not necessary to 
specify such dependence at this point. The particles lea ng the surface a re  
then reduced by a factor P. It should be noticed that i- would correspond 
to the percentage (o r  probability) of particles sticking permanently to the 
surface and will be called the sticking coefficient. Under equilibrium condi- 
tions it is then possible to specify the number of partic s emitted from 
Ax(at x) into the angle w(at 0)  I/ This is the number particles leaving 
Ax(at x) that will hit the optical surface, 



In two dimensions the number of particles leaving the source, going to x, 
being re -emitted randomly with d' Lambertian distribution and hitting the lens 
is 

cos e P = - N  
source lens 2 x , ~ x  N 

Although the cosine dependence is explicit in cos6", it is preferable to 

employ the relationship cos - - 8 - sin 6 and use the expression for e 
given in equation (7) . The expression for N 

&Ax 
the region Ax has already been given [equation (6)] in terms of the source 
rate and geometry. Substituting these expressions into equation (9)  yields 

for the particles hitting in 
(; 9- 

P N  - -  Ax - 
source - lens (2n12  N 

(X2+Yi) 4 (X,-x) 2+  (Yt-y') 

To consider all the particles from the source which make only - one collision 
with the "top" (or llbottomll) wall and proceed to the lens it is necessary to  
integrate over the top (or  bottom with appropriate geometry) wall: 

Before treating the case in which the particle 'makes more than one collision 
with the walls and then hits the lens it is necessary to  consider the llbackll 
wall (wall 3). The geometry for this case is shown in Figure 6. 
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X 

+ x 4  
Y=Q 

Figure 6. Geometry of back wall contributions. 

The distance from the Ay region on the back wall to the center of the 
lens is given by 

and the angle 9 is given by 

9 = tala 

A s  previously determined the number of particles per second leaving the Ay 

analogously to N for the top wall. The number leaving in the direction 

9 is proportional to  cos@ After  rao,rmalizing, as in equation (8) this 
number i s  seen to be 

where N has been defined for the back wall 
Y S  AY 

xI Ax 

I f  



For random @ the probability of a particle hitting .the lens is 

N = N  = N  
Aydlens Ayy@ AY9@ JW 

When the last two equations are combined, the number of particles leaving the 
source, hitting Ay, and re-emitting to strike the lens is seen to  be 

The number of particles leaving the source and striking Ay is found 
in the same manner that the number striking Ax was determined. Thus, 

This is substituted into equation (12) . To find the total contribution from the 
back wall of particles making only - one collision and proceeding to the lens, 
the sum over all Ay’s is taken. In the limit this sum becomes the integral 

Nback - I lens - - s” 
YO 

The one-collision contributions from the top and back walls have been 
determined. The bottom wall is simply treated as a top wall and equation (11) 
is used with appropriate geometry. Since only straightline paths a re  assumed 
there can be no single-collision contribution from the front wall. The con- 
tribution from the source directly to the lens will now be calculated. The 
geometry is shown in Figure 7. 

The direct contribution to the lens is proportional to  the angle sub- 
tended by the lens divided by the angle into which the source is isentropically 
emitting, that is, o/2n , where 

12 



/ x = o  y = o  

Figure 7. Source to lens geometry. 

Y1 -1 = s  = tan , = s - =  A s  7 AycosO 
r r 

YO YO 

For a source emitting N particles per second into 27r radians for Ay << xo 
this expression is reducible to [See equation ( 6)] : 

for Ay << xo a 

N 
source - lens 2w 

N -  N 

At this point, calculations a re  possible and have been carried out for typical 
geometries, These will. .be compared to a more realistic solution which is 
considered in the next subsection. 

The contribution to the optical surface from particles striking a 
surface element and being re-emitted has been found. All  particles on this 
surface element were assumed to have come directly from the source; but 
actually some of the particles on any surface element have reached their 
position after at least one collision with another wall. The special case in 
which only one prior collision is assumed will be treated by the following 

t the surface element in question be area Ax on the top wall. 
By treating this element a s  an optical surface the technique developed in the 

13 



previous subsection can be used to find the contributions to  this element from 
particles making one collision with another wall prior to striking the surface. 
It is necessary to make the identification of Ax with lyi-yol in equations (11) 
and (13) and to modify other parameters to  fit the format of these equations. 
Symmetry arguments allow all  possible wall combinations to be handled with 
only two basic calculational techniques. Both basic configurations are  repre- 
sented in Figure 8. 

Figure 8. Geometry involved in determining number of particles 
making one collision with the walls before striking x. 

The geometries shown in Figure 8 must be rotated through 90 degrees 
to be put in a format which is obviously suited for application of equations (11) 
and (13) . The rotated geometrics are shown and labeled in Figure 9. 

It should be obvious from inspection of the above figures that the 
words lftopfv and 'vbottomll and vffront17 and vlbackll are interchangeable. Al l  
possible combinations of two wall collisions a re  handled by equations ( 11) 
and (13) with conversion of the figures to the appropriate formats. 

For purposes of calculation it is necessary to choose some sample 
geometry. The geometry shown in igure 10 will be that used for all calcula- 
tions in this report. 

14 



"LENS" 

Figure 9. Conversion of Figure 8 to required formats. 

I 

Figure 10, Values used in all  calculations (al l  distances in centimeters) e 

Calculations have been performed for the configuration shown in 
Figure 9a with the distances given in Figure 10. It is reasonable to assume 
that the one-collision contributions to Ax depend on the location of Ax and 
this is found to be true. Therefore, Ax was located at seven different points 
ranging completely over the top wal e The contributions from wall 3 to Ax 
on wall 2 were found to vary smoothly with x and assumed values from 

to 0,000663 PNAx. A c m e  was fitted do the points such that 
found by equation ( i) can be represented a s  

15 



where 

kl( x) = 0.000703 -0.0000107~ + 0. 000000044x2 

P = probability that particle will re-emit from wall 3 

N = number of particles pe r  second emitted by source 

Ax = area of surface element on wall 2 

= particles emitted from wall 3 to Ax on wall 2. 
3-Ax on 2 

N 

A very good approximation to equation (15) is 

= 0.0004PNAx Nwall 3-Ax on 2 

Similar calculations for the contribution to Ax on wall 2 from those particles 
which leave the source, strike wall 4, are re-emitted, and proceed on the Ax 
have been carried out as above. The configuration is that corresponding to 
Figures 8b and 9b and the relevant formula is equation ( 13) with appropriate 
parameters. The results of moving Ax along wall 2 are given on the basis of 
nine points. These nine points yielded contributions to Ax varying smoothly 
from 0.000419 PNAx to  0.000798 PNAx.  A curve f i t  program yielded 

where the symbols are explained above and the dependence on the location of 
Ax on wall 2 is best described by 

A very 

ki(x) = 0.0005605 + 0.0000113~ - 0 . 0 0 0 0 0 0 ~ ~ ~  

good approximation to N is given by 4-Ax on 2 

w 0.0007 PNAx . N b ~ x  on 2 

16 



In a similar manner, symmetry considerations allow the calculation of 
the contribution to Ax from the front wall. The results found on the basis of 
seven points can be summarized by 

By extending consideration to those particles which make 2, 3, 4, or more 
collisions with various walls before landing in the region from x to x+Ax on 
wall 2, it is possible to  write an expression for the number of particles 
striking A x  per second: 

x+Ax n x+Ax x+Ax 
n n 

mix+ p2 J 
X 

J 
x 2x dN 

direct one collision two collisions 

x+Ax x+Ax s dN + . . .  n 
dNQx 4- 0 e . + P nx x 

+ P3 s 
X 

three collisions n collisions 

The first integral represents the direct contribution to Ax from the source 
and has already been integrated [equation ( 14)], and the second integral 
represents the one collision contribution expressed in equations ( 1 6 ) ,  ( l a ) ,  
and (18) e A similar notation is adopted for the remainder of the series after 
integration such that 

M x, Ax ="[ A X +  B k l ( x ) A x +  P2k2(x) 

1 + Pn k (x )Ax+  * .  n 

he maximum value of P=l for which the series diverges represents the 
physically unrealizable situation in which no particles ever stick to  the 
surfaces. A l l  other values of P lead to convergent series, assuming that 
k (x) are  well-behaved. It will also be assumed that the following relation 

holds : 
n 

a 



Before an attempt is made to sum this series, the situation in which 
there are holes in the container walls will be considered. Although each hole 
must be separately considered as a possible source of contaminant particles, 
it also serves a s  a sink for particles. If the area of the sinks is denoted by 
a and the area of the container walls denoted by A, the probability of an 

. This arbitrary particle re-emitting and striking Ax is decreased by - 
is only approximately exact but the e r ro r  does not justify the effort necessary 
to find the exact effect which would be a function of the walls on which the 
particles, Ax, and the sinks were located. If this factor is taken into account 
in the definition 

A 
A+a 

P' = .(A) a+A 

and if this probability is used in equation (19), the equation becomes 

r 00 1 

= N  [&z + k n (x) P'n 
n+ I x,Ax Ax 27r(x + y )  N 

The relation given by equation (20) establishes an upper bound to the series. 
If the equality is chosen, the series becomes a geometric series in P' after 
factoring out ki(x) P' from equation (21) . This maximum contribution to 
Ax at  x is given by 

This value can now be substituted into equation (9) to give the contribution to  
the lens from the top (bottom) wall taking all collisions into consideration. 
Thus, equation (11) can be rewritten a s  follows: 

1 27r ki(x) P92 
I -P '  PJ top-lens ( 2n ) 

X 

(X, - x)2  + ( Y i  - y y  

18 



In a similar manner equation (21) can be substituted into equation ( 12) 
for the contribution to  the lens from the back wall. Al l  collisions a re  con- 
sidered. This allows equation ( f3 )  to be rewritten: 

Nback -lens - - s" 
YO 

2n kl(x) PI2 1 

A Simpson's rule numerical integration has been carried out for 
equations (23) and (24) , Some value of ki(x) must be decided upon before 
the integral is evaluated. The values in equations ( 161, ( 17) and (18) add 
up to  a value of 0.0013 for k,. All  wa Is are considered. Because this value. 
is low, the integration will be carried out by using several times this number; 
i.e. 

k, e 0.0065 e 

Although the determination of k, is the weakest link in the analysis, further 
work has shown that the above choice of ki agrees very well with data obtained 
by an entirely different approach. 

The different approach to the problem is to t ry  a Monte Carlo simulation 
to  be run on a digital computer and compare the results of the analytic and 
simulation methods. The comparison of results will follow the next section 
on the Monte Carlo approach. 

Because of the extreme fficulty encountere in rigorously determining 
a value of k (x) the extende owce function for rticles making n col- n 
lisions before riking Ax, it was decided to  check the approximation made 
with a different approach to  the problem. Although the choice of k (x) turned n 



o d  to be very good indeed, the Monte Carlo program was found to have a 
number of advantages over the analytic one, a s  might have been imagined. 
These will be discussed after presentation of the program. 

The approach followed is that of generating particles with the required 
probability distributions and following their motions, keeping track of position 
at  every collision with the walls. At each collision a probability that the 
individual particle will stick is generated and this  is compared with the sticking 
coefficient.. If the particle sticks, a new particle is generated; if not, then the 
particle leaves the wall yi th  the required directional distribution and the 
process is repeated. Generating large numbers of particles builds up statistics 
which provide the desired data. 

Since velocities a re  of no significance for this part of the problem, only 
directions a re  generated for each particle. Starting at the source, the space 
inside the container is divided into quadrants (Fig. 11) . 

r4 = tm-’ (&) 

Figure il. Quadrants to determine first wall hit. 

For each particle a direction is generated and then tested to determine 
into which quadrant the particle was emitted. Once this determination has 
been made it is simple trigonometry to  calculate the position where the 
particle strikes the wall. If the particle is to  be re-emitted then a new 
determination of quadrants is necessary if it is to be known which wall the 
particle will strike. Such a calculation is necessary for every collision since 
the angles change a s  a function of position on the wall. Every time the first 
wall is hit, a check is made to  find out i f  the particle hits the lens. Every time 
a particle hits the lens, this fact is recorded and a new particle is generated 
at the source. 

20 



The equation and figures for a particle impinging on each wall are 
given in Figures 12 through f5 ,  They start with wall 9 and proceed to the next 
higher number. 

Figure 12. Quadrants for first wall re-emission. 

Figure 13. Quadrants for second wall re-emission. 

-1 

igure 14. Quadrants for third wall re-emission. 

23. 



Figure 15. Quadrants for fourth wall re-emission. 

Every particle which is re-emitted is given a cosine distribution which 
maximizes the probability of coming off perpendicular to  the walls. However, 
the chance that it may go either to  the right or to the left requires a test to  see 
which wall it will hit. This is done by testing on the appropriate a and p 
given in the above figures. For each wall, then, a new calculation is necessary 
to ascertain where the particle hit. This is done by trigonometry and results 
in the following sets of equations: 

For a particle coming off wall 1 at position y with angle 8 

i f  e<a x = X o +  (y-Yo)tan8 on wall 2 

if a<e<p on wall. 3 

if e>p x = Xo +(y-Yl)tan8 on wall 4 . 
y = y+ ( Xo-Xl)/tan 8 

For a particle coming off of wall 2 at  position x with angle 8 

if 8 < a  on wall 3 

if a<8 <p x = x+( Yo-Yl)/tane on wall 4 

if e>p y = YI+(Xo-x) tan8 on wall i . 

y = Y1 + ( X i x )  tan 8 

For a particle leaving position y on wall 3 with angle 8 

if e<a x =  Xo+(y-Yo)tane on wall 4 

if a<B<p on wall i 

if e>p on wall 2 

y = y + ( Xl-Xo)/tan 8 

x = XI +( y-Yl) tan 8 
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For a particle leaving position x on wall 4 with angle 8 

if e < @  y = Yo +(Xo-x)tane on wall f 

if a< e<p x = x +( Yi-Yo)/tan 8 on wall 2 

y = yo +(Xi-x) tan8 on wall 3 e i f  8>p 

The primary task of the computer is simply to keep track of where the 
particle is as it generates new random directions for the particle. The data 
a re  generated by counting particles emitted versus particles which hit the lens. 
Although this is the only output of the analytic programs it is also possible to 
find the mean number of collisions for a given sticking coefficient and to 
separate the contributions by wall. 

The advantages of the Monte Carlo technique over the analytic method 
are twofold. It is just a s  easy to consider a source on one of the walls as an 
interior source with the Monte Carlo. Because the source is always at  the 
origin of the coordinate system, the program decides from the geometry where 
the source is and handles the situation accordingly. A further advantage is that 
the thermal distribution is more easily handled in the Monte Carlo case. The 
sticking coefficient is temperature dependent and this ability may be necessary 
if there are appreciable thermal changes in the walls a s  a function of position. 

If in the future it is necessary to  incorporate baffles into the design, 
this would be almost impossible with the analytic approach. Although it would 
not be an easy task, it could probably be written into the Monte Carlo program. 

Figures 16 through f 9  il ustrate the agreement between the two different 
methods of attacking the proble e Because of the presence of the "extended 
source" parameter ki in the analytic program it was necessary to have some 
check on the analytic calculations. Although not as necessary, it was certainly 
a s  desirable to  have an independent check on the Monte Carlo simulation. The 
curves were ed on a Hewlett-Packard C lotter, Model 9125A, 
driven by an Calculator, Model 91OOA. lytic curves are exact 

Monte Carlo curves are  f i t  w 
vidual points obtained from 

n exponential regression program to 
nte Carlo computer runs. It is felt 
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0.01 a 

MONTE CARLO 
SIMULATION 

Figure 16. Sample calculations of top wall contribution to mass flux at 
optical surface /. 
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Figure 1'9. Sample calculations of back wall contribution t o m a s s  flux at 
optical surface. 
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Figure 18. Sample calculations of bottom wall contribution to mass flux 
at optical surface. 
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0- 0--00 o--@o- 

Figure 19. Sample calculations of those hits going from source directly 
to optical surface. 

that the remarkable agreement between two such dissimilar methods of 
solving the problem is sufficient to  allow the conclusion that the Monte Carlo 
method has been proven successful in its application. Such a conclusion is 
almost required before the much more complicated three -dimensional Monte - 
Carlo simulation is attehpted. 

It should also be pointed out here that with slight modifications the two- 
dimensional program can be used as an integral part of an experimental pro- 
gram to determine actual sticking coefficients. 

The graphs (Figs. 16 through 19) are plotted such that the ordinate is 
always mass flux incident at the optical surface (times the known source rate) 
and the abscissa is the probability of re-emission from the walls. This 
parameter serves a s  the independent variable with mass flux dependent upon 
its value. Each wall is considered separately. It was not felt worth the 
effort to sum all the walls and compare tie total flux, although this is one of 
the outputs of the Monte Carlo program. It should be mentioned that the 
contribution of those particles going directly from the source to  the optical 
surface should be determined by the geometry and should obviously be inde- 
pendent of the probability of re-emission. This is seen to be the case in 
the relevant graph, 

27 



The computer program for the Monte Carlo calculation i s  listed in the 
appendix. The language i s  Fortran IV and the program was run on an IBM 1130. 
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*EXTENDED PRECISION 

170 
t 

C 
e 
C 

1 

2 
3 

4 
5 

6 
7 

8 

10 

C 
11 

779 

C 

T E A D ( 2 c b 7 0 )  X O Q E ~ Y O ~ E ~ X Z E R O B Y Z E R O , Y T O P , Y B O T  
f O R V A T ( 6 F l O e 4 )  
I N I T I A L I 7_ E CONS T A k1 T 5 
ALPHI O c O  
R E T A I  0.0 
D E T E R Y I N E  WHICH WALL SOURCE IS ON AhiD DENOTE BY B * ~ * o o ~  I F  T H E  
SOU9CE IS NOT Oh! AhIY WALL THEY Q = 0 ease AFTER D E T E R V I N A T I O N  IS 
)“AADF THE QUADRANT ANGLES ARE C A L C U L A T E D  
I F  I XZERC)) 2 B 1 9 2  

Q= 1 
ALPHI = QTAN(-%OME,YOh!E) 
RET A I = OT Ab’ ( - X O P  E 9 Y Z E R O  ) 
GO TO 10 
I F ( Y O Y E ) 4 9 3 9 4  
Q=T 
ALPHI  f QTAN(YZEROIXONE) 
R E T A I -  Q T A N ( Y Z E R O t X Z E R 0 )  
GO TO 10 
I F  (XON!E)6  i 5  16 
o= 3 
A L P H I  Q T A N ( X Z E R 0 , Y Z E R O )  
R E T A I  = Q T A N ( X Z E R O 9 Y O N E )  
GO TO 10 
I F  ( Y Z E R O )  8 9 7 9 8  
0 = 4 r  
ALPHI  = Q T A N ( Y O Q E i X Z E R 0 )  
F!ETAI= QTAN(YOYEIXONE) 
GO TO 10 
Q= 0 
AOh!E= 
AT!nlO= 
ATHRE = Q f A M ~ Y Z E R O t X O N E )  
AFOUR= Q T A N ( Y Z E P O ~ X Z E R 0 )  
GO TO 10 
OSTAR =Q 
XL=XZERO-XONE 
YL=YONE-YZERO 
DO D I F F E R E N T  V A L U E S  OF P S T I K  U S I N G  K I F  D E S I R E D  
DO 96 Kx394 
W R I T E  ( 3 9 7 7 7 )  
FORMAT ( I P S T  I K J L D I R E C T  TOP BACK BOTTOM+ 
P S T I K ~ l r Z - o l + K  
I h i I T I A L t Z E  THE COUNTERS 
ISUM=O 
L+ 1 
L Z E R O  = 0 
LT\t,!O = 0 
L T H R E  = 0 
LFOUR = 0 

QTAN ( Y O Y E  9 XZERO 1 
QTAN (YONE 9 XONE 1 
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c I N I T I A L I Z E  T H E  Q A N D O M  N U Y B E R  G E N E R A T O R  
P = a ~ a 3 2 * ~ / 2 e 0  
T 5: e 4 6 2 2 * # / 2 0 0  
S = a 6 7 7 1 * K / 2 e 0  
R E c 3 4 7 3 * K / Z e O  

1 2  0 0 9 5  J = 1910000 
C R U N  J-P,?AX P A R T I C L E S  ) / H E R E  J-YAX IS E R D  OF J D O - L O O P  
c R E - S E T  C O L L I S I O N  C O U K T  T O  Z E R O  
6200 I ;=O 
C R E - S E T  C O - O R D I h ! A T E S  T O  Z E R O  F O R  E A C H  NEW P A R T I C L E  

X = O r C 1  
Y = O * @  
b L P H P = A L P H I  
R E T A = R E T A I  
O = O S T A R  

C C H E C K  T H E  C O L L I S I O N  C O U N T  TO D E T E R M I N E  W H E T H E R  T H I S  IS NEW 
e P A R T I C L E  W I T H  ‘ I A K C O V  D I S T R I B U T I O N  OR C O Y I N G  OFF A WALL WITH 
e COSI’VE D I S T R I B U T I O N ( U N L E S S  S O U R C E  IS ON WALLS* @.*IF SO THE 
e ]IF T E S T  I N  S T A T E Y E l \ r T  16 WILL G I V E  C O S I N E  O l S T  ANYWAY) 

2 4  1 ~ ( 1 ) 9 9 ~ 1 6 ~ 9 0  
16 f F ( 0 ) 9 9 9 3 0 9 9 0  

C G E N E R A T E  R A N D O M  D I S T R I B U T I O N  Z E R O  T O  TWO P I  
30 C A L L  R A N D N ( R 1  

C D E T E R P I N E  W H I C H  b !ALL T H E  P A R T I C L E  H I T  
A R G I = 6 @ 2 8 3 1 8 5 3 + R  

3 2  I F ( A O N E - A R G % ) 5 0 , 9 7 9 8 0  
5 0 I F ( A TWO- A R C I 1 6 0 9 9 7 9 5 b 

GO TO 200 
5 1  X=YOPE /TAQ(ARGI[ 1 

60 I F ( A T t - 1 R E  - A R G 1 ) 7 0 9 9 7 9 6 1  
6 1  Y = X O V E + T A N ( A R C ] I )  

GO T O  300 
70 I F  A F O U R - A R G I  180 997 971  

7 1  X = Y Z E R O / T A N ( A R C I )  

80 Y = X Z E R O * T A N ( A R C % )  
GO TO 4 0 0  

GO TO 100 
C C H E C K  T O  SEE W H E T H E R  P A R T I C L E  HTT T H E  L E N S  e 6 1 1  I F  I T  D I D  T H E N  
C GO T O  O R I G I N  A N D  S T A R T  NEW P A R T I C L E  R U N  ( I N C R E M E N T I N G  
C C O U N T E R S  A S  T H I S  IS D O K E ) o o e  I F ‘ N O T  9 G E N E R A T E  NEW P R O B A B I L I T Y  
C T W A T  P A R T I C L E  ‘ J ILL  G E T  O F F  OF W A L L  A N D  C O Y P A R E  W I T H  P S T I K  

1 O O  I F ( Y - Y R O T  1 1 0 5 ~ 1 3 1 9 1 0 1  
1 0 1  S F ( Y - Y T O P ) 1 0 2 ~ 1 0 2 t b 0 5  
102 L=L-+l  

ISUM = xsur‘.2 + H 
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W R I T E  ( 3  9666 1 PSTI K 9  Jsb s l t E R O  w t T W ~ 9 L ~ H ~ ~ g ~ ~ O ~ R  

IF(O)99~1039104 
103 LZERO LZERO+I 

GO TO 9 5  
104 I F 1 Q - 2 1 9 9 ~ 7 0 2 9 1 0 6  
702 L T w O  = L T W O + l  

GG TO 9 5  
106 I F ( Q - 3 1 9 9 9 7 0 4 r 1 0 7  
7 0 4  LTHRE = LTHRE+l  

107 I F ( Q - 4 1 9 9 9 7 0 6 9 9 9  
706 LFOUR = LFOUR+l 

ORMAT ( 2 X  9 F6 * 3 9 6  ( ;bx 9 15 

GO TO 95 

GO T O  95 
105 CALL RANDN(P1 

I F ( P D P S T I K ) 9 5 ~ 1 0 8 t 1 0 8  
C DENOTE WALL HIT AND GENERATE QUADRANT ANGLES 

108 Q=l 
ALPHA.= QTAN(XL9 YONE-Y 1 
BETA= C T A N ( X L 9  Y Z E R O - Y  1 
GO TO 500 

I F ( P - P S T I K )  95s201r201 

ALPHA = Q T A N ( Y L 9  X-XONE 1 
BETA = Q T A R ( Y L 9  X-XZERO 1 
GO TO 500 

IF(P-PSTIK1 95,301,301 

ALPHAS Q T A N (  X L v Y - Y Z E R O )  

GO TO 500 

I F P-PST I K 1 95 940 19401  

ALPHA= Q T A n l ( Y L ,  XZERO-X 1 
BETA= C?AN(YL9(XORE-X) )  
GO TO 500 

C UPDATE COLLISIIOF.1 COUNTER 

200 C A L L  RANDN(P1 

2 0 1  Q=2 

300 C A L L  W N D N I P )  

301 0=3 

RETAt  QTAN ( X t  9 Y m Y O N E  1 

400 CALL RANOE\ ; (P)  

401  Q=4 

500 I = % + l  
GO T O  14 
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e GEF!ERATE COSIPE D % S T P I A U T I O N  Z E R O  T O  P I  
QO C A L L  R A N D N ( S )  

C A L L  RANDK! ( T 1 
I F ( T - S k R 5 9 8 5 9 8 6  

85 A [ ? G = 1  o 5 7 0 7 9 6 3 * S  
GO T O  9 1  

8 6  A R G = 3 s 1 4 1 5 9 2 * ( 1 c O - T / 2 0 0 )  
9 1  I F ( Q - 1 ) 9 9 9 1 1 0 9 9 2  

C D E T E R V I N E  F R O M  Q W H I C H  W A L L  WAS H I T  A N D  C A L C U L A T E  T H E  P O S I T I O N  
e WHERE P A R T I C L E  H I T  

92 IF ( Q - 2  1 9 9  $210993  
93 I F ( Q - 3 ) 9 9 9 3 1 0 9 9 4  
94 I F ( Q - 4 ) 9 9 9 4 1 0 s 9 9  
110 I F ( A L P H A - A R G l 1 2 0 , 9 7 v b l b  
111 X = X Z E R O + ( Y - Y O N E  ) * T A N ( A R G )  

399 B E T A  = A R C  

1 3 2  Y = Y + X L / T A N  ( A R C  1 

GO TO 200 

120 I F ( B E T A - A R G ) 1 1 3 , 9 7 9 1 1 2  

GO TO 300  

GO T O  400 
113 X = X Z E R O + ( Y - Y Z E R O ) * T A I ! ( A R G )  

210 I F ( A L P H A - A R G ) 2 2 0 , 9 7 9 2 2 1  
2 2 1  Y = Y O N E + ( X O M E - X ) * T A V ( A R G )  

220  K F ( R E T A - A R G ) 2 2 3 , 9 7 9 2 2 2  
2 2 2  X = X - Y L / T A N ( A R G )  

2 2 3  Y = Y O N E + ( X / E R O - X ) * T A N ( A R G )  

310  I F ( A L P H A - A R G ) 3 2 0 , 9 7 9 3 3 1  
3 3 1  X = X O N E + ( Y - Y 2 E R 5 ) * T A ~ 1 ( A R C )  

3 2 0  I F ( B E T A - A R G ) 3 3 3 , 9 7 9 3 3 2  
3 3 2  Y = Y - X L / T A N  ( A R G  1 

GO T O  100 
3 3 3  X=XOI\lE+ ( Y - Y O N €  1 * T A N  ( A R C )  

GO T O  200 
410 IF ( A L P H A - A R G ) 4 2 0 e 9 7  9441 
4 4 1  Y = Y Z E R O + ( X Z E R O - X ) * T A N ( A R G )  

4 2 0  I F ( B E T A e A R G ) 4 4 3 9 9 7 , 4 4 2  

GO T O  300 

GO T O  400 

GO T O  100 

GO TO 400  

GO T O  100 

4842 X = X + Y L / T A k  ( A R C  1 
GO T O  200 

GO T O  300 
443 Y = Y Z E R O + ( X O N E - X ) * T A N ( A R G )  

9 4  W R I f E ( 3 9 6 5 )  
6 5  F O R M A T ( ' P A R T I C L E  H A S  H I T  T H E  C O R N E R  R E C Y C L E e I )  

GO T O  95 
99 W R I T E ( 3 s 6 4 )  
64 F O P M A T ( ! V A R % A B L E  HAS I W P O S S I B L E  V A L l J E e @ )  
95 C O N T I N U E  
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C C A L C U L A T E  P A T E S  F O R  RUK J U S T  F I N I S H E D  
R A T E  = F L O A T ( L - l ) / F L O A T ( J )  
CAVG= F L O A T  ( X SIJ'vl) / F L O A T  ( L 1 
DI RCT = F L O A T  ( L Z E l i O  1 I F L O A T  ( J  ) 
!s'FOIJR = F L O A T  ( L F O U R  1 / F L O A T  ( J  ) 
WTWO = F L 0 4 T  ( LTWO 1 / F L O A T  ( J 1 
WTHRE = F L O A T ( L T H R E ) / F L O A T ( J )  

idR I T E  ( 3 9 70 1 ) J 9 P S  T I K 9 C AVG 9 R A T E  9 D f R CT 9 WT WO 9 WF OUR 9 K T H R  E 
C P R I Q T  OUT SUVVARY O F  RUN FOR E A C H  V A L U E  O F  P S T I K  

7 0 1  F O R V A T ( '  SUVMARY O F  ' 9 1 6 9 '  P A R T I C L E  RUN W I T H  P S T I K  EQUAL ' 9 F 6 4 3  
1///' AVERAGF NUVBER OF C O L L I S I O W S  ':JITH T H E  M A L L S  WAS' 9F7.2/ / / '  T H E  
2 F L U X  R A T E  AT LEh!S FOR A L L  P A R T I C L k S  WAS ' 9 F 3 . 5 9 '  T I V E S  T H E  SOURCE 
3 R A T E e ' / / '  T H E  D I R E C T  R A T E  FRO' l  T H E  SOlJRCE K A S t n F 8 m 5 / / '  T H E  R A T E  F R  
4CM THE TOP W A L L  IdAS ' s 3 X , F 8 * 5 / '  T Y E  R A T F  F P O N  THE EOTTOM W A L L  +]AS' 
5 F R e 5 / '  T H E  S A T E  F q O "  T H E  RACK d A L L  ',/AS ' t 2 X t F 8 9 5 )  

96 C O V T I  NUE 
9 P  C O V T I M U E  

S T O P  
EYD 

SURROUT I ME RANDY ( Z 
D A T A  1 / 1 1  
R E A L  E4 
I F ( I )  1 9 2 ~ 1  

1 I = O  
Y=2.0**20 

A t 2  a 0 +*10+3 a 0 

Z = X / M  
RETURN 
END 

~ = 5 6 6 3 a 7 ~ 0  

2 x = A * x - I F I X ( A + X / M I * M  
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